Stem Cell-Like Properties of the Endometrial Side Population: Implication in Endometrial Regeneration
نویسندگان
چکیده
BACKGROUND The human endometrium undergoes cyclical regeneration throughout a woman's reproductive life. Ectopic implantation of endometrial cells through retrograde menstruation gives rise to endometriotic lesions which affect approximately 10% of reproductive-aged women. The high regenerative capacity of the human endometrium at eutopic and ectopic sites suggests the existence of stem/progenitor cells and a unique angiogenic system. The objective of this study was to isolate and characterize putative endometrial stem/progenitor cells and to address how they might be involved in the physiology of endometrium. METHODOLOGY/PRINCIPAL FINDINGS We found that approximately 2% of the total cells obtained from human endometrium displayed a side population (SP) phenotype, as determined by flow cytometric analysis of Hoechst-stained cells. The endometrial SP (ESP) cells exhibited preferential expression of several endothelial cell markers compared to endometrial main population (EMP) cells. A medium specific for endothelial cell culture enabled ESP cells to proliferate and differentiate into various types of endometrial cells, including glandular epithelial, stromal and endothelial cells in vitro, whereas in the same medium, EMP cells differentiated only into stromal cells. Furthermore, ESP cells, but not EMP cells, reconstituted organized endometrial tissue with well-delineated glandular structures when transplanted under the kidney capsule of severely immunodeficient mice. Notably, ESP cells generated endothelial cells that migrated into the mouse kidney parenchyma and formed mature blood vessels. This potential for in vivo angiogenesis and endometrial cell regeneration was more prominent in the ESP fraction than in the EMP fraction, as the latter mainly gave rise to stromal cells in vivo. CONCLUSIONS/SIGNIFICANCE These results indicate that putative endometrial stem cells are highly enriched in the ESP cells. These unique characteristics suggest that ESP cells might drive physiological endometrial regeneration and be involved in the pathogenesis of endometriosis.
منابع مشابه
I-31: Reconstruction of Human Endometrium from Somatic Stem Cells
s:3115:"Background: During reproductive life, the human endometrium undergoes around 500 cycles of growth, breakdown and regeneration. This outstanding regenerative capability is the basis for cyclic endometrial preparation and its dysfunction is involved in pathological disorders. Endometrial regeneration is mediated by the existence of a specialized endometrial stem cell (SC) population recen...
متن کاملIsolation and culture of human endometrial derived cells as an in vitro model for future implantation studies
Introduction: Monthly regeneration of endometrium after cyclical mensturation confirmed the ability of specific population of the cells that presence in the basalis layer and undergone consecutive hormonal changes that could prepared the endometrial layer for probable implantation. These cells, known as, stem cell. The aim of this study was the isolation and culture of human endometrial derive...
متن کاملRegenerative Potential of Endometrial Stem Cells: A Mini Review
Recent findings in stem cell biology have opened a new window in regenerative medicine. The endometrium possesses mesenchymal stem cells (MSCs) called endometrial stem cells (EnSCs) having specific regenerative properties linked to adult stem cells. They contribute in tissue remodeling and engineering and were shown to have immuno-modulating effects. Many clinical trials were undertaken to asce...
متن کاملStem Cell-Like Differentiation Potentials of Endometrial Side Population Cells as Revealed by a Newly Developed In Vivo Endometrial Stem Cell Assay
BACKGROUND Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that hum...
متن کاملNEW RESEARCH HORIZON Review Adult stem cells in the endometrium
Rare cells with adult stem cell activity were recently discovered in human endometrium. Endometrial stem/progenitor cell candidates include epithelial, mesenchymal and endothelial cells, and all may contribute to the rapid endometrial regeneration following menstruation, rather than a single candidate. Endometrial mesenchymal stem-like cells (eMSC) are prospectively isolated as CD146+PDGF-Rb+ c...
متن کامل